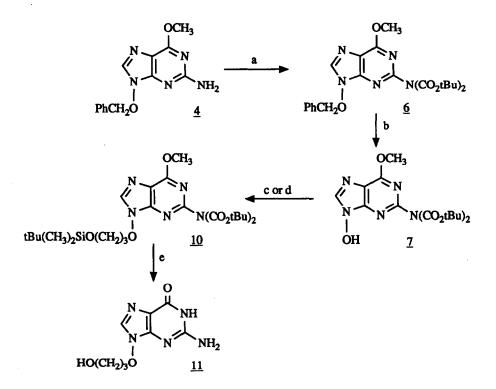

SYNTHESIS OF 9-HYDROXYPURINES: INTERMEDIATES TO NOVEL ANTIVIRAL ACYCLONUCLEOSIDES

M.R.Harnden and P.G. Wyatt^{*} SmithKline Beecham Pharmaceuticals, Biosciences Research Centre, Great Burgh, Epsom, Surrey KT18 5XQ, U.K.

ABSTRACT: Synthetic approaches to 2-[(bis-t-butoxycarbonyl)amino]-9-hydroxy-6-methoxypurine (7) and 9-hydroxy-6-phthalimidopurine (15) are described. These 9-hydroxypurines are useful intermediates in the synthesis of 9-alkoxyguanine and 9-alkoxyguanine derivatives as potential antiviral agents.

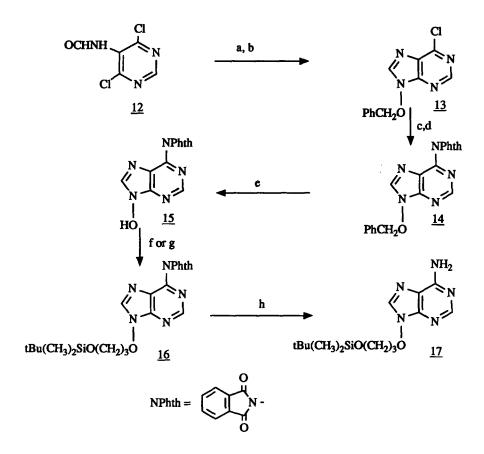

As part of our continuing studies on the preparation and antiviral evaluation of 9-hydroxyalkoxypurines,¹⁻³ we report the synthesis and use of novel 9-hydroxypurine intermediates. Previously we have reported the synthesis of 9-hydroxyalkoxyguanines such as the potent anti-herpesvirus agent <u>11</u> (BRL44385),^{1,3} via either an imidazole intermediate or a suitably functionalised pyrimidine. Although the latter approach is a significant improvement on the original imidazole route, the acyclic substituent is introduced at an early stage, requiring duplication of a number of synthetic steps for each analogue. We rationalised that a more efficient strategy would be via the coupling of a suitably functionalised 9-hydroxypurine with protected alcohols under Mitsunobu conditions or halides under base catalysed conditions. Since direct synthesis of 9-hydroxypurines by oxidation of the corresponding purine is unknown, they were prepared via 9-benzyloxypurines using the pyrimidine intermediates described previously.³

Reagents; (a) $PhCH_2ONH_2$, iPr_2EtN , Diglyme. (b) (i) $(EtO)_2CHOAc$, $120^{O}C$, (ii) NH_3 , MeOH. (c) NaOMe, MeOH. (d) 10% Pd/C, H_2 , EtOH.

Reaction of the 4,6-dichloropyrimidine 1^3 with benzyloxyamine in the presence of diisopropylethylamine and diglyme at 100°C afforded the alkoxyaminopyrimidine 2. Crude 2 was heated with diethoxymethyl acetate at 120°C, followed by treatment with methanolic ammonia to afford the purine 3 in 40% overall yield from 1. Reaction of 3 with methanolic sodium methoxide at reflux temperature resulted in simultaneous displacement of the 6-chloro group and deformylation of the 2-amino function to afford the purine 4 in 60% yield after column chromatography on silica gel. Catalytic hydrogenolysis of 4 with 10% Pd on charcoal then gave the 9-hydroxypurine 5 in 95% yield. $\delta_{\rm H}$ [(CD₃)₂SO] 3.95 (3H, s, CH₃), 6.45 (2H, br.s, D₂O exchangeable, NH₂), 7.93 (1H, s, H-8), 11.75 (1H, br.s, D₂O exchangeable, OH). Found: M⁺181.0594. C₆H₇N₅O₂ requires: M⁺181.0596.

Compound 5 underwent O-alkylation under base catalysed conditions (K_2CO_3/DMF) with 2,2-dimethyl-5-iodomethyl-1,3-dioxan⁴ in 70% yield. Also, we required 5 to couple with alcohols under Mitsunobu conditions⁵; however, this was not achieved. This lack of reaction was possibly owing to the poor solubility of 5 in suitable solvents; therefore, the more soluble N,N-bis-t-butoxycarbonyl derivative of 5 was synthesized.

Reagents: (a) (tBuO₂C)₂O, DMAP, THF. (b) 10% Pd/C, H₂. (c)^tBu(CH₃)₂SiO(CH₂)₃OH (8), PPh₃, DEAD, THF. (d) (i) NaH, DMF, 60° C; or K₂CO₃, DMF, RT. (ii) ^tBu(CH₃)₂SiO(CH₂)₃Br (9). (e) 5M HCl, EtOH, reflux.


Reaction of 4 with di-t-butyl dicarbonate and 4-dimethylaminopyridine in refluxing tetrahydrofuran

afforded the 2-(bis-t-butoxycarbonyl)amino derivative $\underline{6}$ in 80% yield after column chromatography on silica gel. Hydrogenolysis of $\underline{6}$ in the presence of 10% Pd on charcoal then gave the 9-hydroxypurine 7 in 95% yield. $\delta_{\rm H}$ [(CD₃)₂SO] 1.40 (18H, s, 6xCH₃), 4.05 (3H, s,OCH₃), 8.05 (1H, s, H-8), 11.80 (1H, br.s, D₂O exchangeable, OH). Found: C, 50.27; N, 6.12; N, 17.70%. C₁₆H₂₃N₅O₆.0.25 EtOH requires: C, 50.42; H, 6.23; N, 17.66%.

Under Mitsunobu conditions, $\underline{7}$ was found to undergo coupling with the protected alcohol $\underline{8}^6$ to afford the 9-alkoxypurine $\underline{10}$ in 89% yield. Base catalysed alkylation of $\underline{7}$ with the alkyl halide $\underline{9}^7$ in the presence of sodium hydride or potassium carbonate afforded $\underline{10}$ in 77% and 80% yield, respectively.

9-Alkoxypurines such as $\underline{10}$ have been converted to the corresponding guanine derivatives by treatment with refluxing 5N hydrochloric acid in ethanol ($\underline{10}$ gave $\underline{11}$ in 60% yield) or bromotrimethylsilane in either dichloromethane or N,N-dimethylformamide (in up to 80% yield).

Using related chemistry the 9-alkoxy adenine precursor 9-hydroxy-6-phthalimidopurine (15) has been synthesized.

Reagents: (a) PhCH₂ONH₂, iPr₂EtN, Diglyme. (b) (EtO)₃CH, 12M HCl, DMF. (c) NH₃, MeOH. (d) $o-C_6H_4(COCl)_2$, DMAP, Et₃N, THF. (e) 10% Pd/C, H₂, EtOH. (f) 'Bu(CH₃)₂SiO(CH₂)₃OH (8), PPh₃, DEAD, THF. (g) (i) NaH, DMF. (ii) 'Bu(CH₃)₂SiO(CH₂)₃Br (9). (h) CH₃NHNH₂, CH₂Cl₂.

Reaction of the 4,6-dichloropyrimidine³ <u>12</u> with benzyloxyamine and diisopropylethylamine in diglyme at 100°C afforded crude alkoxyaminopyrimidine. Ring closure to the imidazole by treatment with triethyl orthoformate and 12M hydrochloric acid gave the purine <u>13</u> in 48% overall yield. Treatment of <u>13</u> with ammonia in methanol at 100°C afforded the corresponding adenine derivative in 87% yield, which was reacted with phthaloyl dichloride, 4-dimethylaminopyridine and triethylamine in tetrahydrofuran at 0°C to give the 6-phthalimidopurine <u>14</u> in 49% yield. Catalytic hydrogenolysis of <u>14</u> with 10% Pd on charcoal then afforded the 9-hydroxypurine <u>15</u> in 83% yield. $\delta_{\rm H}$ [(CD₃)₂SO] 8.15 (4H, s, C₆H₄), 8.95 (1H, s, H-2), 9.15(1H, s, H-8), 12.80(1H, br.s, D₂O exchangeable, OH). Found: C,55.34, H, 2.58; N, 24.56%. C₁₃H₇N₅O₃ requires: C, 55.51; H, 2.51; N, 24.91%.

Under Mitsunobu conditions, $\underline{15}$ reacted with alcohol $\underline{8}$ in tetrahydrofuran at 0°C to afford the 9-alkoxypurine $\underline{16}$ in 70% yield. Alkylation of $\underline{15}$ with the alkyl halide 9 (NaH, DMF, 60°C) gave $\underline{16}$ in 85% yield. Facile removal of the phthalimido group of $\underline{16}$ using methylhydrazine in dichloromethane then afforded the adenine derivative $\underline{17}$ in 85% yield. Deprotection of the acyclic substituent can be carried out under standard conditions.

This approach to 9-alkoxyguanines and 9-alkoxyguanines has proved to be efficient and applicable to the synthesis of a number of potential antiviral agents. Further examples of the use of these intermediates will be given in subsequent publications.

REFERENCES

- 1. M.R. Harnden, A. Parkin and P.G. Wyatt, Tetrahedron Letters, 29, 701, (1988).
- M.R. Harnden, S. Bailey, M.R. Boyd, M. Cole, R.L. Jarvest and P.G. Wyatt, Topics in Medicinal Chemistry (Proceedings of 4th SCI-RSC Medicinal Chemistry Symposium), ed. P.R Leeming, p.213, (1988).
- 3. M.R. Harnden, P.G. Wyatt, M.R. Boyd and D. Sutton, J. Med. Chem., 33, 187, (1990).
- 4. S.L. Schreiber and Z. Wang, J. Am. Chem. Soc., 107, 5303, (1985).
- 5. O. Mitsunobu, <u>Synthesis</u>, 1, (1981).
- 6. P.G. McDougal, J.G. Rico, Y.I. Oh and B.D. Condon, J. Org. Chem, 51, 3388, (1986).
- 7. S.T. Hill and M. Mokotoff, J. Org. Chem, 49, 1441, (1984).

(Received in UK 27 February 1990)